5 research outputs found

    Exploring the Fairness and Resource Distribution in an Apache Mesos Environment

    Full text link
    Apache Mesos, a cluster-wide resource manager, is widely deployed in massive scale at several Clouds and Data Centers. Mesos aims to provide high cluster utilization via fine grained resource co-scheduling and resource fairness among multiple users through Dominant Resource Fairness (DRF) based allocation. DRF takes into account different resource types (CPU, Memory, Disk I/O) requested by each application and determines the share of each cluster resource that could be allocated to the applications. Mesos has adopted a two-level scheduling policy: (1) DRF to allocate resources to competing frameworks and (2) task level scheduling by each framework for the resources allocated during the previous step. We have conducted experiments in a local Mesos cluster when used with frameworks such as Apache Aurora, Marathon, and our own framework Scylla, to study resource fairness and cluster utilization. Experimental results show how informed decision regarding second level scheduling policy of frameworks and attributes like offer holding period, offer refusal cycle and task arrival rate can reduce unfair resource distribution. Bin-Packing scheduling policy on Scylla with Marathon can reduce unfair allocation from 38\% to 3\%. By reducing unused free resources in offers we bring down the unfairness from to 90\% to 28\%. We also show the effect of task arrival rate to reduce the unfairness from 23\% to 7\%

    Tromino: Demand and DRF Aware Multi-Tenant Queue Manager for Apache Mesos Cluster

    Full text link
    Apache Mesos, a two-level resource scheduler, provides resource sharing across multiple users in a multi-tenant cluster environment. Computational resources (i.e., CPU, memory, disk, etc. ) are distributed according to the Dominant Resource Fairness (DRF) policy. Mesos frameworks (users) receive resources based on their current usage and are responsible for scheduling their tasks within the allocation. We have observed that multiple frameworks can cause fairness imbalance in a multiuser environment. For example, a greedy framework consuming more than its fair share of resources can deny resource fairness to others. The user with the least Dominant Share is considered first by the DRF module to get its resource allocation. However, the default DRF implementation, in Apache Mesos' Master allocation module, does not consider the overall resource demands of the tasks in the queue for each user/framework. This lack of awareness can result in users without any pending task receiving more resource offers while users with a queue of pending tasks starve due to their high dominant shares. We have developed a policy-driven queue manager, Tromino, for an Apache Mesos cluster where tasks for individual frameworks can be scheduled based on each framework's overall resource demands and current resource consumption. Dominant Share and demand awareness of Tromino and scheduling based on these attributes can reduce (1) the impact of unfairness due to a framework specific configuration, and (2) unfair waiting time due to higher resource demand in a pending task queue. In the best case, Tromino can significantly reduce the average waiting time of a framework by using the proposed Demand-DRF aware policy

    Evaluation of Docker Containers for Scientific Workloads in the Cloud

    Full text link
    The HPC community is actively researching and evaluating tools to support execution of scientific applications in cloud-based environments. Among the various technologies, containers have recently gained importance as they have significantly better performance compared to full-scale virtualization, support for microservices and DevOps, and work seamlessly with workflow and orchestration tools. Docker is currently the leader in containerization technology because it offers low overhead, flexibility, portability of applications, and reproducibility. Singularity is another container solution that is of interest as it is designed specifically for scientific applications. It is important to conduct performance and feature analysis of the container technologies to understand their applicability for each application and target execution environment. This paper presents a (1) performance evaluation of Docker and Singularity on bare metal nodes in the Chameleon cloud (2) mechanism by which Docker containers can be mapped with InfiniBand hardware with RDMA communication and (3) analysis of mapping elements of parallel workloads to the containers for optimal resource management with container-ready orchestration tools. Our experiments are targeted toward application developers so that they can make informed decisions on choosing the container technologies and approaches that are suitable for their HPC workloads on cloud infrastructure. Our performance analysis shows that scientific workloads for both Docker and Singularity based containers can achieve near-native performance. Singularity is designed specifically for HPC workloads. However, Docker still has advantages over Singularity for use in clouds as it provides overlay networking and an intuitive way to run MPI applications with one container per rank for fine-grained resources allocation
    corecore